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Abstract. IR test collections make use of human annotated judgments.
However, new systems that surface unjudged documents high in their
result lists might undermine the reliability of statistical comparisons
of system effectiveness, eroding the collection’s value. Here we explore
a Bayesian inference-based analysis in a “high uncertainty” evaluation
scenario, using data from the first round of the TREC COVID 2020
Track. Our approach constrains statistical modeling and generates cred-
ible replicates derived from the judged runs’ scores, comparing the rela-
tive discriminatory capacity of RBP scores by their system parameters
modeled hierarchically over different response distributions. The resul-
tant models directly compute risk measures as a posterior predictive
distribution summary statistic; and also offer enhanced sensitivity.

1 Introduction

TREC COVID [20] is the first IR evaluation track to use the residual collection
scoring pooling methodology described by Salton and Buckley [17]. The track
judged multiple rounds of runs, with shallow judgments made available after
each round, to allow tuning of systems in subsequent rounds. Several participants
raised concerns about the generalizability of the first round judgment set, after
the RBP φ = 0.5 [13] residuals were found to be unacceptably high for systems
not included in the judgment pool. Voorhees [19] investigated the effect that
further judgments had on the system orderings between the complete set and
the first round set, finding that a small portion of systems had significant changes
– the worst being RMITBFuseM2 which rose 33 ranks on P@5. Shallow judgments
are also used for the MS MARCO [14] runs, a collection with so many topics that
deep judgment coverage would be very costly. When system scores are uncertain,
practitioners might decide to only evaluate pooled systems.

In general, when attempting to ascertain whether a ranker outperforms one
or many others, a statistical test is employed to mitigate against sampling error.
Sakai [15] notes that the most popular statistical test at present is the Student
t-test. However, it (and all other frequentist tests) assumes that the sample of
scores are one of many repeated samples from a population of score differences.
Hence, using a t-test, even if the systems were both pooled, might produce
overconfident confidence intervals, as an entire population of unseen topics are
inferred against based on scores derived from low-fidelity judgments. Conversely,
Bayesian inference allows the predicted score replicates to be conditioned on the
measured pooled system-topic scores only.
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In this paper, we adapt models initially described by Carterette [3] to infer
graded RBP φ = 0.8 scores over multiple systems hierarchically [1], and analyze
the relative power of the resulting models using the pooled TREC COVID first
round submissions and judgments, finding increased sensitivity. Other recent
work [1] has also investigated Bayesian “risk” overlays which penalize systems
for relative effectiveness loss against a baseline by a linear scalar r. We explore
a similar summary statistic using the posterior predictive distribution (PPD).

2 Related Work

Carterette [2] was the first to use Bayesian inference as an alternative to frequen-
tist statistical testing for IR effectiveness scores. Carterette [3] then empirically
evaluated the outcomes of these models on the TREC-8, Robust04, and TREC
Web 2012 track datasets. Sakai [16] shows that Bayesian Markov Chain Monte
Carlo (MCMC) simulation can also be used to generate complementary infor-
mation about the effect size of different systems, by calculating Glass’ ∆ and
expected a posteriori (EAP) values for one-to-one system comparisons.

In early work on risk measures, Collins-Thompson [4] explored methods
to measure the risk of query drift in query expansion. Similarly, Wang et al.
[21] defined URisk as a learning-to-rank objective function. Dinçer et al. [6]
then extended the URisk measure to be an inferential risk measure using the
t-distribution, calling the result TRisk. Dinçer et al. [7] noted that in this one-
to-one risk evaluation setting, experimental system comparisons will be biased
to the baseline ranking; prompting the development of ZRisk and GeoRisk [5].

Benham et al. [1] recently combined Bayesian inference and risk-adjusted
score overlays at the system-topic level on multiple systems. However, they did
not compare the relative system effectiveness inferences over statistical models
that consider system-topic-rank gain scores in the way that was proposed by
Carterette [2]. That gap is targeted in this work.

3 Statistical Models

Our primary goal is to understand how increasingly sophisticated models affect
assessment as to which ranker is the most effective. Bayesian inference techniques
effectively reverse-engineer the parameters required to generate the underlying
score observations in a parametric way, conditioned on a set of priors. Those
parameters can be inferentially evaluated directly using a hierarchical model,
such as a system effect parameter, to infer which system(s) are better [12]. We
use the brms front-end to the Stan statistical programming language, in the R

programming language to specify the models.3 In our simulations, we use the
default weakly-informative priors in brms, which are auto-scaled with MCMC to
be credible fits against the observed score values. Benham et al. [1] explain the
process of generating Bayesian inferences in greater detail.

3 Code to reproduce available at: https://github.com/rmit-ir/bayesian-shallow
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Using the pooled runs submitted to 2020 TREC COVID Track, we compare
statistical outcomes when treating observed RBP score values, assuming either
Gaussian or Zero-One Inflated Beta (ZOiB) distributions. Additionally, we model
the RBP gain values directly on a per-document basis (cutting each system-topic
ranking to the pooling depth of 7 documents), similar to Carterette [3], and
compare against a Gaussian approach. The Gaussian method is a useful reference
point, as it is similar in response distribution to t-distributed values [2]. Note that
it is the differences in per-topic effectiveness scores between two systems that are
studentized – beyond those score pairs for multiple system comparisons, many
pairs of tests are run and corrected for. Therefore this exercise cannot guarantee
that one approach gives inferences that are more “truthful” than others, as such
a proof does not exist. The bottom 25% of pooled systems were discarded, to
avoid comparisons being performed against erroneous runs.

Linear Model. The first model, Gaussian, simplistically assumes that the un-
derlying distribution of RBP values is normally distributed, and is a function of
a system and topic effect4:

yij ∼ N (α̂i + β̂j , σ
2
y)

α̂i = ωα,αi
µα + (1− ωα,αi

)αi

β̂j = ωβ,βjµβ + (1− ωβ,βj )βj

σ{y,α,β,αi,βj} ∼ t(3, 0, 2.5)

µα ∼ N (0, σ2
α); αi ∼ N (0, σ2

αi
)

µβ ∼ N (0, σ2
β); βj ∼ N (0, σ2

βj
) ,

where yij is an RBP effectiveness score parameterized by topic j and system i.
The topic and system effects, βj and αi respectively, are moderated by partial

pooling in the corresponding β̂j and α̂i [11], where ωY,y is the pooling factor
that measures the simulated strength of the population Y versus the observed
group effect y (topics for example, β is the topic population parameter averaged
from all other topics in the model, and βj is the specific topic effect for the yij
observation, for example, topic 3)

ωY,y = 1− σ2
Y

σ2
Y + σ2

y

.

The parameters provided to the standard deviation three-parameter Student t-
distribution prior and hyperpriors correspond to the non-informative defaults
in brms for the Gaussian family. The above approach is related to the Model
2 specified by Carterette [3], with marginally more informative priors than the
Jeffreys prior (σ ∼ log (1/σ)).

ZOiB Model. Inspection of the PPD of the Gaussian model (top of Figure 1a)
indicates that the MCMC simulation converges towards a distribution that de-
scribes some characteristics of the underlying effectiveness data. However, as
Gaussian values are in the range (−∞,∞), the replicate effectiveness scores are
frequently invalid. A Beta distribution can be used to model a rate in the range

4 This amends Benham et al. [1, Eqn. 3], which omitted the partial pooling notation.
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(0, 1), and a ZOiB distribution extends that range to [0, 1].5 We thus model RBP
scores with the ZOiB parameters

yij ∼


π0 if yij = 0

(1− π0)(1− π1)β(µijφ, (1− µij)φ) if 0 < yij < 1

π1 if yij = 1

logit µij ∼ N (α̂i + β̂j , σ
2
y)

α̂i = ωα,αi
µα + (1− ωα,αi

)αi

β̂j = ωβ,βj
µβ + (1− ωβ,βj

)βj

σ{y,α,β,αi,βj} ∼ t(3, 0, 2.5)

π0, π1 ∼ β(1, 1)

φ ∼ γ(0.01, 0.01)

µα ∼ N (0, σ2
α); αi ∼ N (0, σ2

αi
)

µβ ∼ N (0, σ2
β); βj ∼ N (0, σ2

βj
) ,

where φ is the precision parameter of the Beta distribution β to be modeled
with a Gamma distribution (another brms default), π0 and π1 are the Bernoulli
probabilities that a score will be zero or one, and µij is logit transformed to link
the linear parameterization (described in Gaussian) to the Beta distribution.

ZOiB-Rank. The ZOiB model can be extended to model yijk per-position
RBP gain scores by including k as a rank parameter, modeled as a population
effect. ZOiB-Rank is therefore a small modification: logit µijk ∼ N (α̂i + β̂j +
k, σ2

y). (Carterette [3] used the very similar Quasi-Binomial distribution to model
RBP gain scores, a response family that is not available in brms.) Of interest
is comparing the properties of the system effect inferences of this gain-based
approach against traditional RBP scores.

Posterior Predictive Risk. The URisk overlay with a challenger system
against a champion computes the value:

URiskr = −(1/n) ·
[∑

Wins − r ·
∑

Losses
]
. (1)

Benham et al. [1] inferentially evaluate risk-adjusted scores using a Bayesian
approach, with increasing r resulting in increased uncertainty according to their
system effects. That uncertainty stems from attempting to predict instances
where an experimental system would outperform the baseline (also known as
the model selection problem). Here, we note that risk measures are essentially
a summary statistic. As we can predict scores from experimental and baseline
systems in a joint statistical model that has already been implicitly corrected for
multiple comparisons in the Bayesian way (via hierarchical modeling [9], noting
that the technique and any other correction approach is not flawless [10]), the
PPD of what is judged to be the best fitting measure can be used to analyze
the spread of the URisk values [8]. That is, for each draw from the posterior
θi ∼ p(θ | data), the set of point parameter estimates from that draw θi is used
to form a posteriori replicate scores supplied to URisk: data ′

i ∼ p(data | θi) [12].

5 https://rdrr.io/cran/brms/man/brmsfamily.html, accessed October 29, 2020.
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Fig. 1: RBP with φ = 0.8: Bayesian analysis of system effects for three different
models, with 95% credible intervals. The top graphs are described in the text.
Numbers to the left of each system corresponds to the ordering the Gaussian

model invoked as a reference.

4 Analysis

Figure 1 plots the parametric inferences of the system effect for 95% credible
intervals for the three models. The density plot above each column contains RBP
topic scores amalgamated over all systems (blue solid line) or RBP gain scores
combining all system-topic-rank scores (red solid line). Faint lines plotted behind
these distributions are draws from the PPD which graphically indicates model
fit – lines closer to the original distribution are preferable.

As can be seen, the two ZOiB distributed models have a better fit than the
Gaussian model. The best system can be distinguished from 17 other (poor) sys-
tems, and the worst system from 23 (good) systems with the Gaussian model;
with the corresponding numbers being 17 and 29 for the ZOiB model, and 20
and 31 using the ZOiB-Rank model. For ZOiB-Rank, the 12th best system from the
Gaussian model (dmis-rnd1-run3) moved up to 2nd place with ZOiB-Rank, and
the run xj4wang run1 moved from 1st to 10th. These shifts occur because ZOiB-

Rank preferences systems more likely to report an RBP gain at any observed
rank, rather than top-heavy systems that may return fewer relevant outcomes
at the φ = 0.8 expected viewing depth of 5 documents. Given that ZOiB visually
fits the score distribution better than the Gaussian counterpart and does not draw
unexpected predictions as in the ZOiB-Rank approach, the ZOiB model provides
the most accurate description of system ranking dominance of the three tested,
on the first round TREC COVID dataset.
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(b) r = 2

Fig. 2: RBP φ = 0.8 EAP risk, URisk with two risk values r against the
bm25 baseline run, 95% credible intervals, and with wins (blue), losses (or-
ange), and run aggregates (yellow) plotted.

Using the ZOiB model, Figure 2 compares risk-free (r = 1) against risk-
sensitive (r = 2) evaluation using EAP values. In Figure 2a only UB NLP RUN 1

(truncated) is able to be discriminated from the bm25 baseline run as the in-
terval excludes zero, which is consistent with the extended parameter inference
plot (without omitted systems) in Figure 1b. In Figure 2b, more challengers are
statistically separable, while still being constrained to the observed outcomes in
the pooled set. This EAP approach is therefore an improvement over the Ben-
ham et al. [1] approach, as it does not subsume the increased variance from the
other challenger systems into the champion baseline system – providing more
discriminative inferences in terms of the original URisk units.

5 Conclusion

Using the first round of the TREC COVID track, we modeled RBP scores via
three separate distributions inspired by Carterette [3], and observed outcomes
for many-to-many inferential system comparisons using a Bayesian hierarchical
model. We found that the ZOiB method worked well for the corpus and smooth
evaluation metrics considered, noting that further work is required to ascertain
its applicability to other datasets (indeed, Urbano and Nagler [18] show that
a one-size-fits-all model is rarely preferable). We also modeled risk inferentially
using the PPD, which is more discriminative than modeling risk scores directly.

We posit that Bayesian hierarchical modeling may complement traditional
IR statistical tests, and particularly recommend their use when there are fidelity
concerns about the judgments used to form the evaluation scores. While these
Bayesian methods are also amenable to more generalizing collection-based com-
parisons, they are not without limitations: they are orders of magnitude slower
than traditional IR tests; and, in our observations to date, tend to require at least
five systems to simulate the system parameters without divergent iterations.
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